Total cost and potential cost savings of the national antiretroviral treatment (ART) programme in South Africa 2010 to 2017

Gesine Meyer-Rath^{1,2,3},

Yogan Pillay⁴, Mark Blecher⁵, Alana Brennan^{1,2,3}, Lawrence Long^{2,3}, Leigh Johnson⁶, Harry Moultrie^{3,7}, Ian Sanne^{2,3}, Matthew Fox^{1,2,3,8}, Sydney Rosen^{1,2,3}

¹ Center for Global Health and Development, Boston University, US
² Health Economics and Epidemiology Research Office (HE²RO), Wits Health Consortium, South Africa
³ Faculty of Health Sciences, University of the Witwatersrand, South Africa
⁴ National Department of Health, South Africa
⁵ National Treasury, South Africa
⁶ Centre for Infectious Disease Epidemiology and Research, University of Cape Town, South Africa
⁷ Enhancing Children's HIV Outcomes (ECHO), Wits Health Consortium, South Africa
⁸ Department of Epidemiology, Boston University School of Public Health, US

Background: Situation in 2008/9

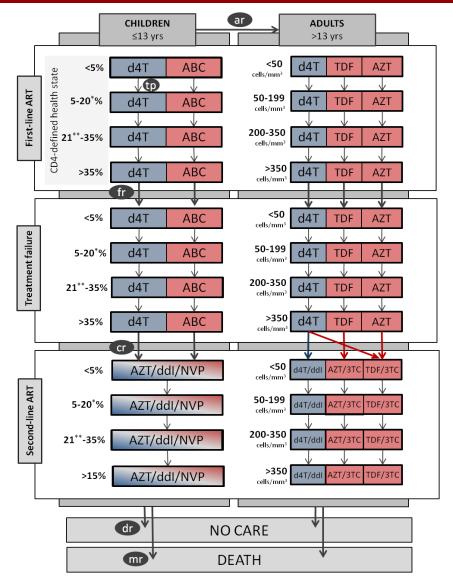
- South Africa has the largest ART programme worldwide
 - 919,923 patients in November 2009
- Initiation rates of >300,000 patients/ year put pressure on funding and capacity
- Discussion about changes to guidelines
 - Increased eligibility
 - Better drugs
 - Changes to drug procurement
 - Changes to staffing levels and tasks
- Department of Health convened Costing Task Team in April 2009

Scenarios: Eligibility criteria

Scenario	Adults	Children
Scenario 1: Old South African guidelines	CD4 < 200 cells/mm ³ or WHO stage 4	CD4 15% to 20% or WHO stage 3 or 4
Scenario 2: New South African guidelines	CD4 < 350 cells/mm ³ for TB/HIV co-infected or pregnant pts CD4 < 200 cells/mm ³ or WHO stage 4 for all others	After positive PCR (Early Paediatric Treatment)
Scenario 3: Full WHO guidelines	CD4 < 350 cells/mm ³ or WHO stage 4	

Scenarios: Adult drug regimens

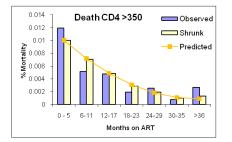
Scenario		Regimen
Scenario 1: Old South	First line	d4T + 3TC + EFV or NVP
African guidelines	Second line	AZT + ddI + LPV/r
Scenario 2: New South African	First line	TDF + 3TC + EFV or NVP for new initiates or if d4T toxicity; d4T + 3TC + EFV or NVP for all others
guidelines and Scenario 3: Full WHO guidelines	Second line	TDF + 3TC + LPV/r if failing d4T- or AZT-containing regimens; AZT + 3TC + LPV/r if failing TDF-containing regimens


Scenarios: Paediatric drug regimens

Scenario		Children < 3 years	Children > 3 years
Scenario 1: Old South	First line	d4T + 3TC + LPV/r	d4T + 3TC + EFV or NVP
African guidelines	Second line	AZT + ddl + NVP	AZT + ddl + LPV/r
Scenario 2: New South African	First line	ABC + 3TC + LPV/r	ABC + 3TC + EFV or NVP
guidelines and Scenario 3: Full WHO guidelines	Second line	AZT + ddl + NVP	AZT + ddl + LPV/r

Additional conditions

- New drug purchasing system (RL/FDC):
 - ARV drugs at prices set in reference list (modelled on CHAI/ GPRM/ SCMS prices)
 - Fixed-dose combination where possible
- Task shifting (TS):
 - ARV initiation and management by nurses under physician supervision
 - ARV dispensing by pharmacy assistants under pharmacist supervision


Health-state transition model National ART Cost Model (NACM)

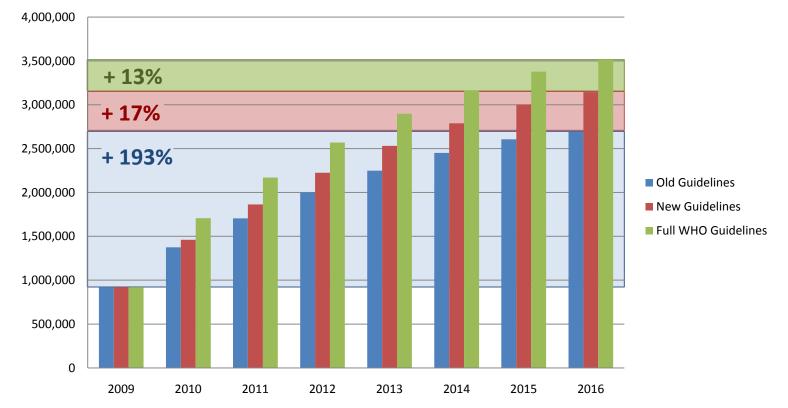
- 6-monthly transitions between types of care and CD4-defined health states
- Number of patients initiating ART from ASSA2003 model
- Initiation rate (coverage of newly eligible pts)
 - 80% in pts with <200 CD4 cells/mm³
 - 24% in pts with 200-350 CD4 cells/mm³
- Model is evaluated for 2010/11 to 2016/17, with a run-in between 2003/4 and 2009/10

Transitions

- Transition probabilites and rates of mortality, loss to follow-up, and first-line treatment failure based on 2 large Johannesburg cohorts:
 - Themba Lethu Clinic Cohort (n= 9,502)
 - Harriet Shezi Children's Clinic (n= 3,748)
- Transition probabilities and rates depend on CD4 cell count/ percentage and, for adult first-line treatment, also on time on treatment
- Mortality and loss rates shrunk towards their values predicted in a linear regression model as a function of the estimate's variance, using an Empirical-Bayes shrinkage estimator (Greenland Epid 1991)

			Probabi	ility of transition to CD4 cell					
	Prob	ability of		count stratum:					
Months	Loss to		<50	50-199	200-350	>350			
on ART	Death	follow-up	cells/µl	cells/µl	cells/µl	cells/µl			
		if CD4 ce	ell count >35	ll count >350 cells/µl					
0 - 5	1.0%	5.4%	0%	2.9%	10.7%	86.4%			
6-11	0.7%	4.2%	0%	1.9%	17.7%	80.4%			
12-17	0.5%	3.2%	0.2%	0.9%	10.4%	88.5%			
18-23	0.3%	2.0%	0.07%	0.5%	9.6%	89.8%			
24-29	0.2%	1.6%	0.07%	1.3%	9.5%	89.2%			
30-35	0.1%	1.2%	0%	0.7%	8.0%	91.3%			
>35	0.1%	0.6%	0.2%	0.5%	9.2%	90.1%			
		if CD4 cell	count 200 - 3	350 cells/µl					
0 – 5	1.4%	5.1%	0.7%	8.4%	57%	33.8%			
6-11	1.0%	3.6%	0.3%	7.8%	62%	29.7%			
12-17	0.4%	2.9%	0.2%	5.4%	57%	37.3%			
18-23	0.5%	2.3%	0.07%	5.2%	63%	31.5%			
24-29	0.3%	1.9%	0.09%	5.8%	64%	30.3%			
30-35	0.3%	1.6%	0%	4.5%	64%	31.6%			
>35	0.0%	1.3%	0%	5.1%	61.3%	33.6%			
		if CD4 ce	ll count 50 -19	99 cells/µl					
0 - 5	2.6%	6.5%	1.0%	39.9%	45.3%	13.8%			
6-11	1.7%	4.7%	0.9%	56.0%	39.0%	4.2%			
12-17	1.1%	4.0%	1.7%	52.7%	41.8%	3.8%			
18-23	1.1%	3.3%	0.9%	52.9%	42.9%	3.4%			
24-29	0.7%	3.1%	1.2%	55.2%	41.3%	2.3%			
30-35	0.5%	2.5%	0.5%	54.8%	38.6%	6.1%			
>35	0.2%	2.6%	0%	54.3%	38.8%	6.9%			
		if CD4 c	ell count <50	cells/µl					
0 - 5	8.0%	9.7%	11.6%	71.2%	15.0%	2.2%			
6-11	5.9%	7.5%	23.6%	65.2%	9.4%	1.7%			
12-17	5.8%	6.0%	31.4%	45.1%	19.6%	3.9%			
18-23	5.4%	4.8%	29.4%	50.0%	11.8%	8.8%			
24-29	0.0%	4.1%	25.0%	58.3%	8.3%	8.3%			
30-35	0.0%	0.0%	25.0%	50.0%	25.0%	0%			
>35	3.6%	6.4%	0%	33.3%	33.3%	33.3%			

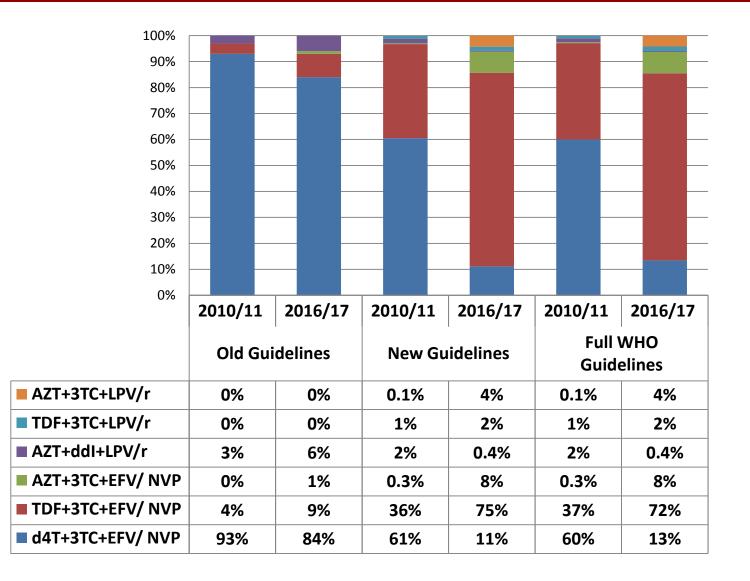
Cost input [2009 USD]


Cost data from bottom-up cost analysis at Themba Lethu clinic in 2007-2009 (n=350); ARV cost for children adjusted by age and weight; ARV costs updated to last g'vt tenders

Cost per patient year (*half-year)	Old guidelines			New guidelines + Full WHO guidelines				
Adults	(d4T regim	ens	TDF regir	nens AZT		regimens	
First line < 6 mts*		448		552	552		420	
First line > 6 mts		672		799			703	
First line failure	662			801		694		
Second line		1,531			1,235		1,140	
Children	d4T regimens ABC regimens				;			
Age [years]	<1	1-5	6-13	<1	1-	5	6-13	
First line < 6 mts*	408 466 478			729	794		812	
First line > 6 mts	507 607 628			515	625		657	
First line failure	542 644 664		550	662		694		
Second line	582	889	880	582	88	9	880 9	

Results: Total number of patients

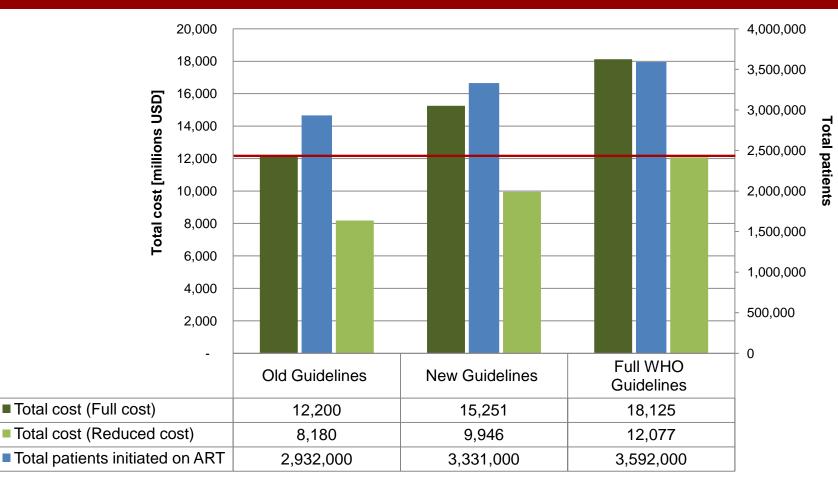
	Total patients initiated	Total patients on ART by year		% increase	
Scenario	2010/11 to 2016/17	2009/10	2016/17	on 2009	
Old Guidelines	2,932,000	1,028,000	2,693,000	193%	
New Guidelines	3,331,000	1,028,000	2,949,000	242%	
% increase on old GL	14%	-	17%	-	
Full WHO Guidelines	3,592,000	1,028,000	3,513,000	282%	
% increase on old GL	23%	-	30%	-	


Results: Total number of patients

Number of patients over time

 →Growth in number of patients on ART over time as a result of prevalence (+193% for Old Guidelines)
is higher than growth in patients as a result of increase in eligibility (+17-30%)

Results: Regimen distribution (Adults)



Results: **Total cost** [million 2009 USD]

	Full cost (Staffing and drug cost as current)			X	Reduc task-shifti ed-dose c	Ŭ	
Scenario	2010/11	2016/17	Total	2010/11	2016/17	Total	% change on full cost
Old Guidelines	1,055	2,245	12,200	711	1,504	8,180	-33%
New Guidelines	1,161	2,994	15,251	754	1,969	9,946	-35%
increase on old GL	10%	33%	25%	6%	31%	22%	-
Full WHO Guidelines	1,415	3,494	18,125	934	2,345	12,077	-33%
increase on old GL	34%	56%	49%	31%	56%	48%	-

→The total cost of the programme increases by 25% and 49%, resp., for the New GL and WHO GL scenarios, as a result of both higher numbers of patients and higher drug cost for TDF-containing regimens.

Summary

→If new drug purchasing mechanisms and task-shifting are implemented, the cost of the New Guidelines is below, and the cost of the Full WHO Guidelines the same as the cost of the Old Guidelines.

Budget impact

	2010/11	2011/12	2012/13
Total public health budget	13.9 billion	15.0 billion	16.0 billion
Percentage of budget at full co	ost		
Old Guidelines	8%	9%	10%
New Guidelines	8%	10%	12%
Full WHO Guidelines	10%	13%	15%
Percentage of budget at reduc	ed cost (TS	and RL/FDC)	
Old Guidelines	5%	6%	7%
New Guidelines	5%	7%	8%
Full WHO Guidelines	7%	8%	10%

Limitations

- Assumption that the rate of initiation between 200 and 350 CD4 cells/mm³ is 30% of that < 200 CD4 cells/mm³ might be an over- or underestimation
- Cost does not differ between CD4 cell counts, and inpatient cost is excluded
- Effectiveness assumed to be the same for d4T-, TDFand ABC-containing regimens
- Task shifting only affects staff and administration cost, not effectiveness
- Impact on transmission not included

Conclusions

- Under both new sets of guidelines, the increase in cost as a result of increased eligibility and better drugs is dwarfed by the increase in cost resulting from the growth in the population in need of ART, regardless of eligibility criteria
- HIV prevalence will continue to be a stronger driver of treatment costs than eligibility thresholds or drug choices
- Our model indicates that the projected increases in treatment cost under both new guidelines could be offset by the introduction of new drug purchasing mechanisms and task-shifting

Implementation

- In April 2010, new South African national ART guidelines were implemented, recommending the changes in eligibility and regimens in the New Guidelines scenario
- Task-shifting has been agreed on, and new reference list mechanism has been issued for 2010 tender
- In February 2010, the national ART budget was increased by 96%, providing care for up to 2.3 million patients by the end of 2012/13
- In order to increase coverage, a HCT campaign was started in April 2010, aiming at testing 15 million South Africans by June 2011

Acknowledgements

Members of Costing Task Team: ۲

David Kalombo, Thobile Mbengashe, Vishal Brijlal, Celicia Serenata, Kevin Bellis

Department of Health: •

Nonhlanhla Dlamini, Nthabiseng Khoza, Lillian Diseko, Helecine Zeeman

- **Treasury:** Mark Blecher ٠
- **Model review:** Frank Feeley, Nick Menzies ٠
- SANAC Treatment, Care and Support Task Team: ٠ Mark Heywood, Francois Venter, Harry Moultrie
- **USAID South Africa:** Melinda Wilson, Clint Cavanaugh, Roxana Rogers ٠
- Staff of the sites providing data ٠

For further information, contact Gesine Meyer-Rath (gesine@bu.edu), or visit our website at http://www.bu.edu/cghd/projects/art_costing_africa/. 19