The Cost-Effectiveness of Adding a Third HIV Test in Routine HIV Testing to Reduce the Frequency of False Positive Test Results in Sub-Saharan Africa

July 20, 2012

ELLIOT MARSEILLE, DRPH, MPP ELINE KORENROMP, MSC, PHD JAMES G. KAHN, MD, MPH

International AIDS Economics Network - Pre-Conference Meeting Center for Global Development 1800 Massachusetts Ave, NW Washington DC

UNDER WHAT CIRCUMSTANCES IS IT COST-EFFECTIVE TO ADD A THIRD TEST TO REDUCE INCIDENCE OF FALSE-POSITIVE HIV TESTS?

FOR ACTUAL HIV-NEGATIVES:

Current algorithm	Algorithm under evaluation	
N	N	
$P \rightarrow N \rightarrow P$	$P \twoheadrightarrow N \twoheadrightarrow P$	
$P \rightarrow N \rightarrow N$	$P \twoheadrightarrow N \twoheadrightarrow N$	
P → P	$P \twoheadrightarrow P \twoheadrightarrow N \twoheadrightarrow N$	
	$P \to P \to P$	
'N' =HIV neg test result; 'P' = pos test result		

Is a third test cost-effective under current epi and cost conditions? Is it CE with expanded access to treatment, e.g. "Test and treat"?

METHODS

Excel-based CE model with SAs including Monte Carlo using @RISK

Literature – based estimates for

- Cost per person-year of ART
- Disutility due to HIV + status and ART
- Cost and test performance of HIV tests

Scenarios based on

- Prevalence of HIV
- Time on ART for False +
- Years before re-test for those who do not access ART
- ART coverage: % of people tested HIV-positive who enrol in ART

Inputs				
Cohort	Cohort 100,000		Range	e for SAs
Prevalence	10.0%		5%	15%
Discount rate	3.0%		0.015	5%
ART coverage	36%		18%	54%
Yrs of ART for false+	6		3	9
Yrs before re-test for false + not on ART	4		2	6
Cost per ART year	\$767		\$537	\$997
Disutility: Side-effects of ART	0.04		0.02	0.06
Disutility: HIV+ diagnosis	0.07		0.035	0.105
Test Performance				
Test 1: Capillus			Range for S	SAs (95% CI)
Sensitivity-tst1	99.8%		99.60%	100%
Specificity-tst1	98.8%		99.60%	100%
Test 2: Determine				
Sensitivity-tst2	97.8%		95.60%	100%
Specificity-tst2	99.4%		96.70%	100%
Test 3: SD Bioline	Test 3: SD Bioline			
Sensitivity-tst3	98.9%		98.40%	100%
Specificity-tst3	99.3%		98.95%	100%
Test Cost				
	Kit	_	Lab tech	Total
Test 1: Capillus	\$2.20		\$0.10	\$2.30
Test 2: Determine	\$0.80	1	\$0.10	\$0.90
Test 3: SD Bioline	\$1.10		\$0.10	\$1.20
Tie breaker: Uni-Gold	\$1.60		\$0.10	\$1.70

Results: 10% HIV prevalence			
	Number of tests	Test costs	False+ averted
Test 1	100,000	\$230,000	0
Test 2 if P plus tie-breakers if P-N	12,358	\$10,992	1,066.0
Test 3 if P-P, plus tie-breakers if P-P-N	9,881	\$13,474	6.4
Incremental cost-effectiveness			
	[DALYs averted	2.45
	Cost per fal	se pos averted	\$2,094
Per DALY averted una	<u>djusted</u> for sa	ved ART costs	\$5,495
Per DALY averted adjusted for saved ART costs			\$1,568
Cost (s	savings) per pt	t tested (+ & -)	\$0.04
	Net program o	costs (savings)	\$3,846

Cost-effective in many countries, but not cost-saving assuming 36% access to ART; and 6 yrs of ART.

Results: 5% HIV prevalence			
	Number of tests	Test costs	False+ averted
Test 1	100,000	\$230,000	0
Test 2 if P plus tie-breakers if P-N	7,375	\$6,513	1,125.2
Test 3 if P-P, plus tie-breakers if P-P-N	4,947	\$7,463	6.8
Incremental cost-	effectiven	ess	
		DALYs averted	2.59
	Cost per fa	lse pos averted	\$1,099
Per DALY averted una	djusted for sa	aved ART costs	\$2,884
Per DALY averted a	djusted for sa	aved ART costs	Cost-saving
Cost (<mark>s</mark>	s <mark>avings</mark>) per p	ot tested (+ & -)	(\$0.03)
1	Net program	costs (Savings)	(\$2,700)
Results: 0.5% HIV prevalence			
	Number of tests	Test costs	False+ averted
Test 1	100,000	\$230,000	0
Test 2 if P plus tie-breakers if P-N	2,891	\$2,482	1,178.5
Test 3 if P-P, plus tie-breakers if P-P-N	508	\$2,053	7.1
Incremental cost-effectiveness			
		DALYs averted	2.71
	Cost per fa	lse pos averted	\$289
Per DALY averted unadjusted for saved ART costs			\$757
Per DALY averted adjusted for saved ART costs Cost-			Cost-saving
Net costs (savings) per person starting test sequence (\$			U
Net costs <mark>(savings)</mark> per pe	erson starting	test sequence	(\$0.09)

Cost-effective and cost-saving assuming 36% access to ART; and 6 yrs of <u>ART</u>.

Net cost per person tested 0.5% HIV prevalence

Net cost per person tested 5.0% HIV prevalence

Cost (savings) per person tested by HIV prevalence, ART coverage and yrs on ART for false +

Cost per false + averted by HIV prevalence and test kit cost

Third test is cost-effective with these combinations of inputs

Access to	Years of	HIV
ART	ART	prevalence
1.8%	3	0.5%
36.0%	3	4.5%
50.0%	6	11.5%
72.0%	9	21.5%

Cost-effectiveness threshold: \$800 = per-capita GDP of Kenya

CONCLUSIONS – IMPLICATIONS:

- Third-test strategy is cost-saving in lowprevalence settings with high rates of access to ART.
- Such settings will be increasingly common in the context of "test and treat" featuring frequent re-tests.
- Thus, these test algorithms are worth considering as an opportunity to reduce the costs and increase the benefits of expanded access to ART.