A Portfolio Approach for HIV Control in South Africa

Elisa F. Long, PhD¹ Robert R. Stavert, MD, MBA²

¹Yale School of Management

²Yale School of Medicine

Supported by the National Institute on Drug Abuse

July 2012

HIV in South Africa

- Largest HIV epidemic in the world
 - 5.3 million HIV+ adults (18%)
 - ► 300,000 HIV+ children
 - 310,000 AIDS-related deaths in 2009
- Disproportionately afflicts young people
 - ▶ GDP reduced by 17% over next 10 years due to HIV
- Increasing antiretroviral therapy (ART)
 - ▶ 1 million (2010) to 1.4 million (2011) people on ART
- HIV Counseling and Testing (HCT) campaign
 - ▶ >10 million people tested in 2011

Recent HIV clinical trials

	Control		Inter	vention	Efficacy	
	n	HIV	+ n	HIV+	- (95% CI)	p-value
Male circumcision	5497	141	. 5411	64	0.50 (0.28-0.66)	0.0002
South Africa, Kenya, Uganda (2005-07)						
Vaccine	8198	74	8197	51	0.31 (0.01-0.52)	0.04
Thailand (2009)						
Microbicide	444	60	445	38	0.39 (0.06-0.60)	0.017
KwaZulu-Natal, South Africa (2010)						
Early treatment	882	27	893	1	0.96 (0.73-0.99)	< 0.0001
Africa, Brazil, India, Thailand, US (2011)						
THE WALL STREET JOURNAL.			The New York Times September 25, 2009 For First Time, ADC Vacaina Shawa Sama Sugara			
Study Says Circumcision Reduces AIDS Kisk by 70% Findings From South Africa May Offer Powerful Way To Cut HIV Transmission By DOMAD G. MolEL Jr.				vs some succes		
n p r Ehe New york Eimes						
Scientists Say A Gel Can Slow H July 23, 2010	IV Sprea	d	Early H.I.V. Therapy Sharply Curbs Transmission			

2011 Political Declaration

Joint United Nations Programme on HIV/AIDS (UNAIDS)

New HIV infections

Resources available for HIV in low- and middle-income countries

2011 Political Declaration

Joint United Nations Programme on HIV/AIDS (UNAIDS)

"The framework represents a radical departure from current approaches, and has 4 aims

- Maximizing the benefits of the HIV response,
- Using country-specific epidemiology to ensure rational resource allocation,
- Encouraging countries to implement the most effective programmes based on local context,
- Increasing efficiency in HIV prevention, treatment, care and support."

Elisa F. Long (Yale School of Management)

HIV Control in South Africa

- What is the effect of implementing a portfolio of partially effective HIV interventions in South Africa?
- HIV screening
- Antiretroviral treatment (2010 WHO guidelines)
- Male circumcision
- Microbicide
- Vaccine

- What is the effect of implementing a portfolio of partially effective HIV interventions in South Africa?
- HIV screening
- Antiretroviral treatment (2010 WHO guidelines)
- Male circumcision
- Microbicide
- Vaccine

• Is there an optimal portfolio, given limited resources?

- Develop a dynamic HIV epidemic model to evaluate the cost-effectiveness of alternative portfolios in South Africa.
 - (a) Heterosexual transmission, disease progression, morbidity, mortality
 - (b) Parameterization epidemiologic, demographic, behavioral, clinical data
 - (c) Outcomes HIV prevalence, incidence, costs, QALYs, cost-effectiveness
 - (d) Time horizon 10 years
 - (e) Implementation Matlab 2011, Runge-Kutta 4th-order solution technique

- Develop a dynamic HIV epidemic model to evaluate the cost-effectiveness of alternative portfolios in South Africa.
 - (a) Heterosexual transmission, disease progression, morbidity, mortality
 - (b) Parameterization epidemiologic, demographic, behavioral, clinical data
 - (c) Outcomes HIV prevalence, incidence, costs, QALYs, cost-effectiveness
 - (d) Time horizon 10 years
 - (e) Implementation Matlab 2011, Runge-Kutta 4th-order solution technique
- Determine optimal portfolio allocation (out of 3,500 considered), for varying resource levels.

- Develop a dynamic HIV epidemic model to evaluate the cost-effectiveness of alternative portfolios in South Africa.
 - (a) Heterosexual transmission, disease progression, morbidity, mortality
 - (b) Parameterization epidemiologic, demographic, behavioral, clinical data
 - (c) Outcomes HIV prevalence, incidence, costs, QALYs, cost-effectiveness
 - (d) Time horizon 10 years
 - (e) Implementation Matlab 2011, Runge-Kutta 4th-order solution technique
- Otermine optimal portfolio allocation (out of 3,500 considered), for varying resource levels.
- Incorporate a Monte Carlo simulation for probabilistic sensitivity analysis on program efficacies.

Portfolios considered

- Select individual interventions
- Select combinations
- All 3,500 combinations

ART	Screening	Circumcision	Vaccine	Microbicide
50%	every 3y	0	0%	0%
60%	every 2y	0.10	25%	25%
70%	every 1y	0.20	50%	50%
75%	every 6m	0.30	75%	75%
80%		0.40	100%	100%
90%				
100%				

Portfolios considered

- Select individual interventions
- Select combinations
- All 3,500 combinations

ART	Screening	Circumcision	Vaccine	Microbicide
50%	every 3y	0	0%	0%
60%	every 2y	0.10	25%	25%
70%	every 1y	0.20	50%	50%
75%	every 6m	0.30	75%	75%
80%		0.40	100%	100%
90%				
100%				

Intervention strategy	HIV cases averted (%)		ed (%)
	Men	Women	Total
Antiretroviral therapy (CD4 350 cells/mm ³)	17.5	16.0	16.7
Screening	21.7	26.9	24.5
Screening & ART	41.3	45.7	43.7
Male circumcision	18.5	6.5	12.1
Microbicide	10.5	30.4	21.1
Vaccine	25.8	26.7	26.3
Circumcision, Microbicide & Vaccine	43.9	51.4	47.9
Combination (all 5 programs)	64.5	72.4	68.7

- Screening and ART have increasing returns \Rightarrow *complements*.

- Circumcision, microbicide, vaccine have decreasing returns \Rightarrow *substitutes*.
- Reduced secondary transmission is an important consideration.

Intervention strategy	HIV cases averted (%)		ed (%)
	Men	Women	Total
Antiretroviral therapy (CD4 350 cells/mm ³)	17.5	16.0	16.7
Screening	21.7	26.9	24.5
Screening & ART	41.3	45.7	43.7
Male circumcision	18.5	6.5	12.1
Microbicide	10.5	30.4	21.1
Vaccine	25.8	26.7	26.3
Circumcision, Microbicide & Vaccine	43.9	51.4	47.9
Combination (all 5 programs)	64.5	72.4	68.7

- Screening and ART have increasing returns \Rightarrow *complements*.

- Circumcision, microbicide, vaccine have decreasing returns \Rightarrow *substitutes*.
- Reduced secondary transmission is an important consideration.

Intervention strategy	HIV cases averted (%)		ed (%)
	Men	Women	Total
Antiretroviral therapy (CD4 350 cells/mm ³)	17.5	16.0	16.7
Screening	21.7	26.9	24.5
Screening & ART	41.3	45.7	43.7
Male circumcision	18.5	6.5	12.1
Microbicide	10.5	30.4	21.1
Vaccine	25.8	26.7	26.3
Circumcision, Microbicide & Vaccine	43.9	51.4	47.9
Combination (all 5 programs)	64.5	72.4	68.7

- Screening and ART have increasing returns \Rightarrow *complements*.
- Circumcision, microbicide, vaccine have decreasing returns \Rightarrow *substitutes*.
- Reduced secondary transmission is an important consideration.

Cost-effectiveness analysis

Efficient vs optimal portfolio Maximize QALYs

Elisa F. Long (Yale School of Management)

HIV Control in South Africa

Monte Carlo simulation (intervention effectiveness)

Monte Carlo simulation (intervention effectiveness)

Elisa F. Long (Yale School of Management)

Simulation results

HIV incidence over 10 years

• Expanded HIV screening and treatment have synergistic effects and offer the greatest benefits when both programs are available.

- Expanded HIV screening and treatment have synergistic effects and offer the greatest benefits when both programs are available.
- Biomedical prevention programs (circumcision, microbicide, vaccine) exhibit diminishing returns because an infection cannot be prevented more than once.

- Expanded HIV screening and treatment have synergistic effects and offer the greatest benefits when both programs are available.
- Biomedical prevention programs (circumcision, microbicide, vaccine) exhibit diminishing returns because an infection cannot be prevented more than once.
- A combination portfolio of modestly effective programs could prevent 2/3 of new HIV cases in South Africa, add 30 million QALYs over 10 years, and be a very cost-effective use of resources.

- Expanded HIV screening and treatment have synergistic effects and offer the greatest benefits when both programs are available.
- Biomedical prevention programs (circumcision, microbicide, vaccine) exhibit diminishing returns because an infection cannot be prevented more than once.
- A combination portfolio of modestly effective programs could prevent 2/3 of new HIV cases in South Africa, add 30 million QALYs over 10 years, and be a very cost-effective use of resources.
- Even with substantial uncertainty in efficacy, a combination portfolio prevents more than 2 million HIV cases over 10 years with high probability.

- Expanded HIV screening and treatment have synergistic effects and offer the greatest benefits when both programs are available.
- Biomedical prevention programs (circumcision, microbicide, vaccine) exhibit diminishing returns because an infection cannot be prevented more than once.
- A combination portfolio of modestly effective programs could prevent 2/3 of new HIV cases in South Africa, add 30 million QALYs over 10 years, and be a very cost-effective use of resources.
- Even with substantial uncertainty in efficacy, a combination portfolio prevents more than 2 million HIV cases over 10 years with high probability.
- Given limited resources, the optimal portfolio of interventions can be determined.

Thank you!

elisa.long@yale.edu

