Potential Impact of an RV144-like HIV Vaccine in Diverse Epidemic Settings

Elisa Long, Yale University
Kyeen Andersson, Futures Institute
John Glasser, CDC
Thomas Harmon, IAVI
Douglas Owens, Palo Alto VA, Stanford University
Catherine Hankins, UNAIDS, AIGHD
Robert Chen, CDC
RV144 trial

- Results published December 2009
- 16,402 participants in Thailand
- Vaccine regimen
 - ALVAC (weeks 0, 4, 12, 24)
 - AIDSVAX B/E (weeks 12, 24)
- Overall efficacy over 42 months
 - Intention to treat: **26.4%** (p=0.08)
 - Per-protocol: **26.2%** (p=0.16)
 - Modified ITT: **31.2%** (p=0.04)
- But trial data suggest that efficacy may decline over time...
Curve fit to RV144 trial data

\[\text{Efficacy} = 0.78 e^{-0.06t} \]

HIV vaccine modeling consortium

- UNAIDS and CDC convened consortium in early 2010
- Invited independent groups of epidemiologists and mathematical modelers
- Research question:

 What is the impact of a modestly effective HIV vaccine with waning efficacy (similar to RV144) on the HIV epidemic?

- Presented preliminary results at AIDS Vaccine Conference in Atlanta (September 2010)
- Published special issue of Vaccine (August 2011)
Reference case

Modelers identified a clear reference case to facilitate model comparisons

- Single vaccination campaign with waning efficacy
- Vaccination of adult population: 30% or 60% coverage
- Modeled outcome: proportion of HIV infections averted over 10 years

Additional analyses (optional)

- Periodic booster vaccinations, assuming restoration of immunity
- Effect of behavioral risk compensation
- Cost-effectiveness

All other modeling assumptions and parameters were allowed to vary between groups
Results summary
(10-year horizon; 60% vaccination coverage)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Setting</th>
<th>Baseline HIV Prevalence</th>
<th>HIV Infections Averted</th>
<th>With Boosters (frequency)</th>
<th>Vaccinations per Infection Averted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagelkerke et al, Thailand</td>
<td><2% (all)</td>
<td>14%</td>
<td>58% (1y)</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Schneider et al, Thailand</td>
<td>1% (all)</td>
<td>7%</td>
<td>25% (2y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25% (MSM)</td>
<td></td>
<td>38% (1y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson and Stover, Thailand</td>
<td>1.4% (all)</td>
<td>10%</td>
<td>35% (1.4y)</td>
<td>1725 (all)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220 (high-risk)</td>
<td></td>
</tr>
</tbody>
</table>
HIV infections prevented
(10-year horizon)

- 0%
- 2%
- 4%
- 6%
- 8%
- 10%
- 12%
- 14%

30% coverage
60% coverage

Thailand (i)
Thailand (ii)
Thailand (iii)
South Africa (iii)
Soweto, South Africa (iv)
United States (vi)
KwaZulu-Natal, South Africa (vii)
New South Wales, Australia (vii)
Impact of periodic boosters
(10-year horizon; assuming full restoration of immunity)

HIV infections prevented

<table>
<thead>
<tr>
<th>Country</th>
<th>One-time vaccination</th>
<th>5-year boosters</th>
<th>2-year boosters</th>
<th>1-year boosters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soweto, South Africa</td>
<td>5%</td>
<td>30%</td>
<td>35%</td>
<td>25%</td>
</tr>
<tr>
<td>United States</td>
<td>10%</td>
<td>30%</td>
<td>35%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Lessons learned (1)

- Model-based analyses were broadly consistent, despite widely different assumptions.
 - A single vaccination campaign reaching 60% of adults averts approximately **10%** of new HIV cases.

- If effective, periodic booster vaccinations substantially improve infections averted.
 - Bi- or tri-annual boosters prevent **20-27%** of cases.
 - Annual boosters prevent **35-58%** of cases.

- Prioritization to groups at higher risk of HIV improves program efficiency.
 - Can prevent **80%** as many infections, with 10% of required vaccinations, compared to universal adult vaccination.
Lessons learned (2)

- Vaccination with partially effective HIV vaccines can be cost-effective.
 - At $100 per regimen, vaccination in South Africa costs $2,700/case averted, or $10,000/life-year gained.
 - At $500 per regimen, vaccination in USA costs <$100,000/QALY gained.

- Behavioral risk compensation post-vaccination does not eliminate vaccination benefits.

- Rate of efficacy decline affects short- and long-term epidemic outcomes.
Key remaining questions

- What is the rate of efficacy decline and duration of protection?
- How does efficacy differ among individuals at higher risk of HIV infection?
- What is the role of a vaccine in a portfolio of interventions?
- What is the immunological impact of vaccine boosters?
- Is there evidence of behavioral risk compensation post-vaccination?
Related posters

Abstract **WEPE-654**
Elisa Long et al.
A model-based consensus on the impact of an RV144-like HIV vaccine in diverse epidemic settings

Abstract **TUPE-179**
Katharine Kripke and Matthew Hamilton
Differing models, same results: testing the consistency of seven HIV vaccine impact models across seven populations
Acknowledgments

- Patricia Fast (IAVI)
- Independent modeling teams
- National Institute on Drug Abuse
- UNAIDS
- U.S. Centers for Disease Control and Prevention
- USAID
- International AIDS Vaccine Initiative (IAVI)